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A B S T R A C T   

This review article summarizes our research of persistent organic pollutants (POPs) in human milk from Croatian 
mothers over the last few decades. Our studies make up the bulk of all POPs research in human milk in Croatia 
and show a state-of-the art in the research area. The first investigations were made in 1970’s. Aim of our review 
article is to document the comprehensive results over several decades as the best tool to: 1.) contribute to un-
derstanding of POPs and their potential health risks, 2.) evaluate effectiveness of legislative bans and restrictions 
on human exposure to POPs in Croatia, and 3.) to suggest further actions. In our review we discuss: 1.) Human 
milk between 2011 and 2014 - evaluation of interrelations of organochlorine pesticides (OCP) and poly-
chlorinated biphenyls (PCB) in human milk and their association with the mother’s age and parity using artificial 
intelligence methods; and our yet unpublished research data on health risks for infants assessed through daily 
PCB and OCP intake. 2.) Time trends of PCB and OCP in human milk between 1976 and 2014. 3.) polychlorinated 
dibenzo-p-dioxins and polychlorinated dibenzofuran (PCDD/F) in human milk in 2000., and yet unpublished 
data on PCDD/F and polybrominated diphenyl ethers (PBDE) in 2014.   

1. Introduction 

Polychlorinated biphenyls (PCB), organochlorine pesticides (OCP), 
polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated di-
benzofurans (PCDF) are well-known organochlorine compounds and the 
most persistent and widespread environmental contaminants of the 20th 
and 21st century (Jones, 2021; van den Berg et al., 2017). PCB and OCP 
have had intensive and wide commercial applications, while PCDD and 
PCDF have never been used, being unwanted by-products (Lerche et al., 
2002). For more than 50 years, their toxic effects have been evidenced in 
the top predator species (Jensen, 1972) and other animals and humans, 
which they owe to their persistence, lipophilicity and related bio-
accumulation, toxicity, and long-distance air transport. This is why in 
2001, representatives of 92 countries signed the Stockholm Convention 
on POPs and committed themselves to controlling the release of POPs 

into the environment. The Convention entered into force in 2004, and 
today, it is endorsed by 185 countries including Croatia, whose parlia-
ment approved it in 2006 (OG-11/2006). Usage of „legacy POPs“ (PCB, 
OCP) was banned or restricted during the 1970s and 1980s in many 
industrial countries, and levels have declined in primary sources. 
However, one OCP, which is among the initial POPs listed under the 
Stockholm Convention, dichlorodiphenyltrichloroethane (DDT), is 
continuously used for control of malaria and leishmaniosis (Van den 
Berg et al., 2017). PCB, OCP, and PCDD/PCDF are inherently persistent, 
their loss in the environment is not complete and they are removed from 
surface compartments to deeper horizons of soils, water bodies and 
sediment. At a global level, the oceans are their final sink due to the 
absence or slow degradation mechanisms through which pollutants 
enter the food chain through marine organisms living at the bottom. 
They are transferred from one part of the environment to the other (air - 
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surface of water, air - soil, plants; gaseous phase in air - particles in air; 
water - soil, sediment) and subjected to long-range transport via air 
masses. In short, PCB, OCP, and PCDD/PCDF are everywhere (even the 
Arctic and Antarctic), in all parts of abiotic and biotic parts of envi-
ronment, and such diffuse sources are difficult to control. 

PCB, OCP, and PCDD/PCDF accumulate in human tissues which 
contain fat, and their elimination from the human body is very slow. 
Relevant matrices for assessing human exposure are adipose tissue, 
blood, and human milk, but the first two require invasive techniques for 
biomonitoring, which is why human milk is an ideal matrix to measure 
POP content in the adipose tissue of lactating mothers (Global Envi-
ronment Monitoring System (GEMS), UNEP & WHO, 1983; Aerts et al., 
2019 and references herein), as it corresponds to that in the plasma, 
serum lipids, and adipose tissue and can be used as an indicator of 
overall exposure to POPs in women and breastfeeding children (Van den 
Berg et al., 2016). Since 1950, numerous studies on the levels in human 
milk in the world have been published (Global Environment Monitoring 
System GEMS, UNEP & WHO, Uppsala, 1983; Fång et al., 2015 and 
references herein). Studies show that maternal pregnancy overweight-
ness and obesity (BMI ≥25.0 kg/m2) are associated with higher PCB 
levels in human milk (Ellsworth et al., 2020; Tang-Peronard et al., 2014) 
while milk fat content does not change as a consequence of maternal 
weight status. In addition, there are increased levels of placental PCB in 
women with obesity (Jeong et al., 2018). The elevated PCB in milk 
during a transition period of colostrum to mature milk may reflect 
increased adipose stores of PCB (Jeong et al., 2018). 

Levels of organic pollutants in milk may depend on several factors, e. 
g. parity and duration of lactation (during lactation pollutants secretes 
from the mother’s body); maternal age (as it is assumed that amount of 
pollutants in the body increase with age) (Polder et al., 2009; Hassine 
et al., 2012), and diet (food of animal origin) (Engeset et al., 2015 and 
references therein), but this dependence has not been observed in all 
studies (Ingelido et al., 2007), and the subject is still somewhat 
controversial. Thus, Ingelido et al. (2007) found no correlation between 
levels of organochlorine compounds in milk and maternal fish con-
sumption. Nevertheless, some studies have proven the opposite, Aerts 
et al. (2019) published results from the 6th World Health Organization 
(WHO) Coordinated Survey on POPs in human milk in Belgium and 
found that inclusion of fatty fish into the diet, particularly predatory 
fish, was associated with higher levels. They recommended that diet and 
exposure routes other than diet deserve more attention in future 
research. Komprda et al. (2019) reported the importance of detailed 
food questionnaires in biomonitoring studies considering specific food 
commodities due to the impact of food contamination, while factors 
such as body weight or age at delivery had no significant impact on 
concentrations of PCB in breast milk. For example, Hassine et al. (2012) 
reported an increase of POPs with the age, while Vigh et al. (2013) found 
the opposite. 

Most countries show a temporal downward trend of POPs in human 
milk (Van den Berg et al., 2016; Gyllenhammar et al., 2021; Mikeš et al., 
2012). According to a comprehensive global review on POPs in human 
milk summarized by Fång et al. (2015), longer time series (through three 
or four decades) are scarce in research temporal trend studies, and the 
only two countries with long temporal trend studies are Japan and 
Sweden. At the same time, some new studies in Asia show high levels 
POPs in human milk, as found in Pakistan (Naqvi et al., 2019) and in 
China (Mianyang) (Guo et al., 2021). The human milk samples collected 
from Taizhou and Lin’a in China (known as a largescale e-waste recy-
cling site in China, and for recycling transformers and capacitors since 
the late 1980s/early 1990s) showed extraordinarily high PCB levels 
(363 and 116 ng g− 1 lipid, respectively (Man et al., 2017). 

As a consequence of ban/control of PCB and OCP primary sources, 
their levels have declined in most countries, however, scientific research 
does not abate because baseline of POP residues are still in human and 
animal tissues, including unborn fetuses via placental transfer, new-
borns via mother’s milk, and in all parts of the abiotic environment, as 

well (Suzuki et al., 2005; Naqvi et al., 2018; Vijaya Bhaskar Reddy et al., 
2019). 

One of the “new POPs” with similar properties to original “legacy 
POPs” under Stockholm Convention are polybrominated diphenyl ethers 
(PBDE) (UNEP/Stockholm Convention). Since the 1970s, PBDEs have 
widely been used as flame retardants in a variety of textile materials, 
furniture fillers, and electronic equipment. In comparison with “legacy 
POPs”, the input/decline trend of PBDE is delayed by 20–30 years, 
because PBDE was manufactured and restricted more recently (Jones, 
2021). PBDE concentrations in human milk reached the peak during the 
period of late 1990s – early 2000s, followed by downward trend in some 
countries as consequence of Stockholm Convention implementation 
(Fängström et al., 2008; Ryan and Rawn, 2014). Important exposure 
source is contact with electronic and other products containing PBDE 
(Frederiksen et al., 2009), while primary route of human exposure is 
inhalation/ingestion of contaminated airborne particles and indoor dust 
(Jin et al., 2019). 

This review article summarizes our research of POPs in human milk 
from Croatian mothers over the last few decade, that has been underway 
at the Institute for Medical Research and Occupational Health in Zagreb, 
Croatia (Herceg Romanić and Krauthacker, 2006; Krauthacker et al., 
2009; Klinčić et al., 2014, 2016; Šimić et al., 2020; Jovanović et al., 
2019, 2021). Our studies make up the bulk of all POP research in human 
milk in Croatia, and the first investigations about OCP in human milk in 
Croatia were made around 1970 (Krauthacker et al., 1978; Krauthacker 
et al., 1980; PhD Thesis of Krauthacker, 1984; Bažulić et al., 1978). The 
aim of our review article is to document our comprehensive results over 
several decades as the best tool to evaluate effectiveness of legislative 
bans and restrictions on human exposure to POPs in Croatia. Our sum-
marized results is a contribution to understanding of POPs and their 
potential health risks, and show a state-of-the art of POPs monitoring in 
Croatia. Review could be valuable for policy decision making to protect 
public health and to suggest further actions. Insight into time trends is 
important to observe if levels are stabilizing or decreasing, giving base 
for data in the next decade for estimation of future breast milk levels. 

The review includes: 1.) Human milk between 2011 and 2014 - 
evaluation of interrelations OCP and PCB in human milk and their as-
sociation with the mother’s age and parity using artificial intelligence 
methods; and our yet unpublished research data on health risks for in-
fants assessed through daily PCB and OCP intake. 2.) Time trends of PCB 
and OCP in human milk between 1976 and 2014. 3.) PCDD/F in human 
milk in 2000, and yet unpublished data on PCDD/F and PBDE in 2014. 

2. Human milk samples, analyzed compounds, methods, and 
health risk 

2.1. Sampling sites 

Sampling sites (Fig. 1.) and number of samples were chosen ac-
cording to geographical features and small population (amounts to 
approx. 3.8 million in 2022). Croatia is country located in the southern 
part of Central Europe and in the northern part of the Mediterranean at 
Eastern Adriatic coast. The land area is 56,594 km2, and the coastal sea 
area is 31,067 km2. The territory of Croatia extends from the Pannonian 
Plain through the narrow area of the Dinaric Mountains to the coast of 
the Adriatic Sea (5835 km long and consists of 1246 islands). Repre-
sentative sampling sites were chosen in the continental part and at the 
Adriatic coast. In the continental part, Zagreb was selected, and at the 
Adriatic coast, Zadar and the island of Krk. Zagreb is the Croatian cap-
ital, whose metropolitan area has about one million residents, while 
Zadar is a central Adriatic seaside town with about 70,000 inhabitants, 
and island of Krk is the largest and the northernmost island in the 
Adriatic Sea. 
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2.2. Analyzed compounds, samples and methods 

2.2.1. Analyzed compounds 
PCB are synthetic, aromatic, and organic compounds encompassing 

209 isomers and homologues (differing in the number and position of 
chlorine atoms) called congeners. Our research has been focused on: six 
indicator PCB congeners (IUPAC number: 28, 52, 101, 138, 153, 180), 
summarily presented as ΣIndPCB, whose selection was based on their 
dominant presence in technical mixtures, environment, and animal and 
human tissues; four dioxin-like congeners (IUPAC number: 77, 81, 126, 
169) having two pairs and at least two meta chlorine atoms can easily 
achieve a co-planar configuration similar to dioxins; and other 11 
toxicologically relevant congeners to determine them (IUPAC number: 
60, 74, 105, 114, 118, 123, 156, 157, 167, 189, 170), summarily pre-
sented as ΣToxRelPCB. 

The most widely used OCP are 1,1,1-trichloro-2,2-di(4-chloro-
phenyl)ethane (p,p’-DDT), α-, β- and ɣ-hexachlorocyclohexane (α-, β - 
and ɣ-HCH; the ɣ-isomer is known as lindane), and hexachlorobenzene 
(HCB). Biotransformation further degrades (p,p’-DDT) in its very 
persistent metabolite 1,1-dichloro-2,2-di(4-chlorophenyl)ethylene (p,p’- 
DDE). Our primary concern have been HCB, α-, β-, and ɣ-HCH (sum-
marily presented as ΣHCHs) and p,p-DDT, 1,1-dichloro-2,2-di(4-chloro-
phenyl)ethane (p,p-DDD), and p,p-DDE (summarily presented as ΣDDT). 

PCDD and PCDF have 210 congeners in total. 17 toxicologically 
important (2,3,7,8-chlorinated PCDD and PCDF) are analyzed. PBDE 
encompass 209 congeners divided into 10 congener groups depending 
on the number of bromine atoms. Tri - to hepta-brominated PBDE con-
geners (BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE- 
183) and deca-brominated BDE-209 are analyzed. 

2.2.2. Samples and methods 

2.2.2.1. Samples. Human milk samples were collected from healthy 
volunteer mothers from the general population living in Zagreb, Zadar 
and Krk in Croatia between 1976 and 2014 Croatia (Krauthacker et al., 
1978; Krauthacker et al., 1980; PhD Thesis of Krauthacker, 1984; Herceg 
Romanić and Krauthacker, 2006; Krauthacker et al., 2009; Klinčić et al., 
2014; Klinčić et al., 2016; Šimić et al., 2020; Jovanović et al., 2019, 
2021). Before providing milk samples, each participant gave their 
informed consent. All of the studies were approved by the ethics com-
mittees before the start of data collection, and all took place in accor-
dance with the ethical standards of the Declaration of Helsinki. Before 
providing milk samples, the purpose of sampling was explained to each 
participant and each participant gave their informed consent and filled 
out a paper-and-pencil questionnaire prepared for sampling needs. The 
subjects were allowed to withdraw from the studies at any time. 

2.2.2.2. Methods. PCB and OCP were analyzed in the Biochemistry and 
Organic Analytical Chemistry Unit of Institute for Medical Research and 
Occupational Health, Zagreb, Croatia. The analytical procedure was 
described in detail in by PhD Thesis of Krauthacker (1984), Herceg 
Romanić and Krauthacker (2006); Krauthacker et al. (2009), Klinčić 
et al. (2014), Klinčić et al. (2016) and Šimić et al. (2020). 

Interpretation of PCB and OCP results using the artificial intelligence 
(AI) algorithms implemented via machine learning (ML), were made in 
collaboration with the Institute of Physics Belgrade, University of Bel-
grade, Serbia (Jovanović et al., 2019, 2021). Following advanced ML 
methods were applied: eXtreme Gradient Boosting (XGBoost), SHapley 
Additive exPlanations (SHAP) attribution method, and SHAP value 
fuzzy clustering (Jovanović et al., 2021), Guided regularized random 
forest (GRRF) (Jovanović et al., 2019). For pollutant source apportion-
ment Unmix were applied (Jovanović et al., 2019). Time trends of PCB 
and OCP in human milk between 1976 and 2014 were done based on 
data for 10 points: 1976 (27 samples), 1981/82 (50 samples), 1985 (18 
samples), 1986/87 (41 samples), 1987/89 (22 samples), 1990/91 (30 
samples), 1991/93 (54 samples), 1994/95 (45 samples), 2000 (29 
samples), 2014 (150 samples) (Bažulić et al., 1978; Krauthacker et al., 
2009; Jovanović et al., 2021). 

PCDD/F analyses in human milk were part of 1st (Environmental 
Health Series No 34, 1989), 2nd (Environmental Health in Europe No. 3, 
1996), 3rd (Malisch and van Leeuwen, 2003) and 6th WHO POP surveys 
(unpublished results). PBDEs were analyzed in the framework of 6th 

WHO POP survey (unpublished results). 1st, 2nd, 3rd 6th WHO POP sur-
vey was carried out in collaboration with Institute for Medical Research 
and Occupational Health, Zagreb (Biochemistry and Organic Analytical 
Chemistry Unit). 

2.3. Health risk assessment for breastfed infants 

In this review, PCB and OCP concentrations used for health risk 
assessment were the topics of our research of Jovanović et al. (2021) 
while results on health risks were not published before. PCB and OCP 
results are disscussed in detail in the next section 3.1.1. PCB and OCP 
levels. Details about the sampling were in study of Jovanović et al. 
(2021), and details about analytical procedure in study of Klinčić et al. 
(2014). 

Estimated daily intake (EDI) of POPs by infant consumption of 
human milk was assessed based on an average one-year (≈12 months) 
breastfeeding period. The formula for risk assessment has been adopted 
from the Risk Assessment Information System (RAIS, 2014), Meconen 
et al. (2021), and Milićević et al. (2018) and adapted to infant milk 
consumption, as follows: 

EDIPOPs =
Cmilk × Cfat × Ir × ρ

Bw  

ƩEDI = ƩEDIHCH+ƩEDIDDT+ƩEDIdioxin like+ƩEDInon− dioxin like  

where Cmilk is the concentration of POPs in human milk (ng/g); Cfat is the 
average milk fat content (4.4%); ρ is milk density (1.03 gmL-1); Ir is 
average milk consumption by infants (660 mL day-1), and Bw is average 
infant body weight at the age of 1 year (7.43 kg). The sums of each group 
of POPs (EDIs for HCH, DDT, dioxin-like and non-dioxin-like groups) 
were calculated separately, as well as the sum of all EDIs. 

3. Results and discussion 

3.1. PCB and OCP levels and risk assessment between 2011 and 2014 

3.1.1. PCB and OCP levels 
Human milk samples were collected between 2011 and 2014 from 

150 healthy primiparae, secundiparae, and multiparae (having given 
birth in three separate pregnancies) from Zadar aged between 19 and 45 

Fig. 1. Sampling locations: 1. Zagreb; 2. Krk; 3. Zadar.  
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years (Jovanović et al., 2021; Master thesis of Samardžić, 2021). 
Descriptive statistics are presented in Table 1. PCB and OCP levels are 
divided in four groups by mothers’ age: 19–24 years (group 1), 25–30 
years (group 2), 31–36 years (group 3), and 37 and older (group 4). 
Beside age groups, PCB and OCP levels are divided into three groups by 
the number of births (Fig. 2.; Fig. 3.; Fig. 4.). 

3.1.1.1. OCP levels. p,p’-DDE, p,p’-DDT, showed the highest levels and 
we saw a rise in p,p’-DDE, p,p’-DDT, HCB, β-HCH, and γ-HCH with the 
number of births and mother’s age, while α-HCH, p,p’-DDD showed an 
opposite trend (Fig. 2.). The p,p’-DDT to p,p’-DDE ratio has for long been 
used to identify recent DDT pollution, as ratios higher than 1 indicate 
recent input (Ballschmiter and Wittlinger, 1991). Yet, even though DDT 
has not been used in Croatia for about fifty years, this ratio is higher than 
1 in 30% of milk samples, which indicates recent exposure to p,p’-DDT. 
The oldest age group shows the lowest difference between the 25th and 
75th percentile (both percentiles with ratios below 1) and median p, 
p’-DDT/p,p’-DDE ratios are also lower than 1 in all age groups. The most 
extreme p,p’-DDT levels occur in milk samples of the oldest mothers who 
had two or three childbirths (peaking at 92.6 ng g− 1 milk fat, Table 1.). 
The highest p,p’-DDT level of 46.7 ng g− 1 milk fat in age group 1 was 
recorded in one primipara and is similar to 48.8 ng g− 1 milk fat found in 
the sample of another primipara from age group 2, whose p,p’-DDE 
concentration was 9.8 times lower. Other outliers concern samples with 
lower DDT levels yet also with significantly lower p,p’-DDE concentra-
tions, which results in a high p,p’-DDT to p,p’-DDE ratio reflecting recent 
exposure to p,p’-DDT. The highest p,p’-DDE levels were measured in the 
milk of mothers in the oldest age group 4 (Fig. 2.), which resulted in a 
low p,p’-DDT to p,p’-DDE ratio (Fig. 3.). 

β-HCH is a very persistent isomer and was almost consistently higher 
than other HCH isomers. HCB is usually an indicator of industrial ac-
tivity because it occurs as a by-product in the chemical and metallurgical 
industries described by Mamontova et al. (2017) and Runkel et al. 
(2021). High levels of some OCP are present in samples of breast milk in 
areas where there is input into the environment as in Tsygankov et al. 
(2020). 

3.1.1.2. PCB levels. Indicator PCB PCB-138, PCB-153, and PCB-180 
levels showed an increase with maternal age, as does PCB-170. The 
highest PCB-118, PCB-156, and PCB-74 levels were found in age group 4 
(Fig. 4.). Judging by median concentrations, the number of births was 
associated with higher PCB-74, PCB-118, and PCB-170 levels. PCB-74 
and PCB-118 levels were higher only in the multiparae, while PCB- 
170 increased in both secundiparae and multiparae. It is interesting to 
note the presence of PCB-170, which is an infrequently analyzed di- 
ortho heptachlorobiphenyl, and in our study levels were comparable 
to group of indicator PCB. The literature reports little about PCB-170, 
save for Goa et al. (2021), who reported two times lower PCB-170 
than PCB-153 and -138 levels in the colostrum, but twice as high as 

those of PCB-180. According to one report from Spain (Gómara et al., 
2011), the PCB profile in human milk samples was as follows (from 
highest to lowest): PCB138, PCB-153, PCB-180, and PCB-170. 

3.1.1.3. Research of causative occurrence of PCB and OCP in human milk 
using machine learning. To obtain a more precise insight into the influ-
ence on PCB and OCP levels in human milk and their mutual in-
terrelations and associations with mother’s age and parity we used 
machine learning models (Jovanović et al., 2019, 2021). In previous 
years, the application of artificial intelligence implemented in machine 
learning (ML), supported by the large availability of high-dimensional 
data, has had a strong presence in environmental science (Stojić et al., 
2019). In a paper by Jovanović et al. (2021), we chose PCB-138 as one of 
the most prominent indicator PCB for investigating relationships be-
tween PCB-138 and other non-dioxin congeners, mother’s age, and the 
number of births, using the advanced machine learning methods 
eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlana-
tions (SHAP) attribution method to examine these key parameters. 
These methods provide insight into pollutant behavior by attributing 
environmental factor importance, impacts, mutual relations, and in-
teractions. The eXtreme Gradient Boosting regression was employed 
successfully, with a predicted/observed relative error below 20% and a 
high correlation coefficient (r = 0.97). Our results show significant 
linear correlation coefficients (r ≥ 0.90) found between the following 
pairs of investigated variables: PCB-170-PCB-138; PCB-170-PCB-153; 
PCB-170-PCB-180; PCB-153-PCB-180 and PCB-153-PCB-138 indicating 
similar molecular structures and metabolic pathways. The SHAP ana-
lyses revealed that PCB-170 and PCB-153 were the most important 
variables that shaped the PCB-138 behavior patterns in milk samples, 
suggesting that congeners substituted with chlorine atoms at ortho po-
sitions are more prone to bioaccumulation in human milk compared to 
other PCB. These results explain the presence of PCB-170 in human milk, 
supporting the importance of PCB-170 in future measurements. 
Furthermore, PCB-28, PCB-52, PCB-180, PCB-118, PCB-189, PCB-156, 
as well as p,p’-DDE had minor impact on PCB-138 distribution. A fuzzy 
clustering of the SHAP values gave ten clusters, representing groups of 
variable interrelations associated with PCB-138. Results imply a similar 
origin/input of OCP and PCB in the maternal body suggesting that future 
investigations should be performed on dietary habits and the health 
burden of POPs in residential and working environments. Indicated by 
low SHAP values, no significant functional dependencies between 
PCB-138 patterns and maternal age or parity (Jovanović et al., 2021) 
were determined. In our earlier study (Jovanović et al., 2019), an ML 
method Guided regularized random forest (GRRF) was applied for the 
selection of features (pollutants and mother’s age/parity) that are most 
relevant to one another. ML methods provided prediction relative errors 
lower than 30% and correlation coefficients higher than 0.90, suggest-
ing a possible strong non-linear relationship among the pollutants and 
consequently, the complexity of their pathways in breast milk. GRRF 

Table 1 
Descriptive statistics for OCP and PCB concentrations [ng g− 1 milk fat] in the breast milk collected between 2011 and 2014 from 150 healthy mothers (Jovanović et al., 
2021; Master thesis of Samardžić, 2021).   

α-HCH β-HCH γ-HCH HCB p,p’-DDE p,p’-DDD p,p’-DDT PCB-28 PCB-52 PCB-101 PCB-138 PCB-153 

Min 0.10 0.15 0.15 0.10 0.15 0.10 0.30 0.52 0.51 0.54 0.51 0.60 
Max 29.13 14.05 30.85 19.31 77.75 49.48 92.65 10.80 9.60 18.57 23.69 43.61 
Median 0.52 0.60 0.94 2.07 4.98 0.30 2.95 1.15 1.60 2.13 3.04 4.73 
Mean 1.54 1.88 2.03 2.88 8.43 2.66 5.56 1.75 2.33 3.65 4.03 7.42   

PCB-180 PCB-105 PCB-114 PCB-118 PCB-123 PCB-156 PCB-157 PCB-167 PCB-189 PCB-60 PCB-74 PCB-170 

Min 0.53 0.52 0.57 0.51 0.54 0.50 0.50 0.54 0.52 0.52 0.51 0.53 
Max 36.33 5.69 8.35 2.71 2.65 4.21 6.53 8.66 2.16 2.63 5.98 25.62 
Median 2.35 0.93 1.89 0.82 0.72 0.85 0.87 0.79 0.63 0.92 1.20 1.99 
Mean 3.99 1.16 2.17 1.07 1.11 1.13 1.27 1.24 0.84 1.11 1.59 2.96 

The limit of detection for the analyzed compounds were 0.5 ng g− 1 milk fat for PCB congeners, 0.1 ng g− 1 milk fat for α-HCH and HCB, 0.2 ng g− 1 milk fat for p,p’-DDE, 
0.3 ng g− 1 milk fat for β-HCH, γ –HCH and p,p’-DDD, and 0.6 ng g− 1 milk fat for p,p’-DDT. 
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recognized PCB-153, PCB-180, PCB− 170, PCB− 118, PCB− 156, 
PCB− 105, and PCB− 138 as the most important for the mutual predic-
tion, and some importance of p,p’-DDE and β-HCH. Both studies 
(Jovanović et al., 2019, 2021) suggested the ortho position in the 
biphenyl ring is essential for PCB profiles in breast milk regardless of the 
ring coplanar structure. GRRF proposed a slight influence of the 
mother’s age on the PCB and OCP composition of milk regardless of the 
first, second or third child delivery. For the pollutant source appor-
tionment, Unmix (Jovanović et al., 2019) was performed, and GRRF to 
analyze the importance of Unmix-derived sources. Unmix characterized 
four individual source groups. The highest attributions of β-HCH, HCB, 
and γ-HCH characterized the first and the second group. The “heavy” 
hexa-to hepta-chloro occupational congeners: PCB-180, PCB-170, 
PCB-156, PCB-153, and PCB-138 moderately contributed to the third 
group. The fourth group was recognized as a metabolic pathway of p, 
p’-DDT, and partially belongs to the „light” tetra-to penta-chloro con-
geners PCB. These results are in accordance with the mutual associations 
of pollutants selected by GRRF because each source represents a specific 

mixture of the pollutants grouped according to similar chemical struc-
ture or behavior. Results implied they were mostly not related to child 
delivery. 

Our results suggest that reduction via parity is related to mother’s 
age, as older mothers tend to have higher cumulative exposure to PCB 
and OCP. Although our results, presented as comparison of medians 
(Figs. 2 and 4.), indicate that there is a trend of increasing levels with 
age, ML models indicate that this trend is not significant. PCB and OCP 
are inherently present and persistent, and in future measurements 
attention should be paid to PCB-170. PCB congeners substituted with 
chlorine atoms at ortho positions appeared to be compounds of the 
outmost importance for mutual prediction with reference to their in-
terrelations regarding chemical structure and metabolic processes in the 
mother’s body. 

3.1.1.4. Comparison with literature. In the literature older mothers tend 
to have higher cumulative exposure to POPs, and parity is usually 
associated with decreasing levels of POPs in multiparae, because 
breastfeeding is one of the most important factors in the reduction of 
body burdens (Polder et al., 2009). In Polder’s study (2009) during 
2002–2006 across Norway, 423 breast milk samples were collected and 
analyzed to determine influence of age, parity. Age was associated with 
increased POP levels, and parity with decreasing levels. Newer 
comprehensive studies of Aerts et al. and Komprda et al. (2019) high-
lighted the importance of diet on POP levels in human milk. Aerts et al. 
(2019), in a survey of POPs in human breast milk, in a cross-sectional 
sample of 206 primiparous mothers in Belgium found that fatty fish, 
fish oil supplements and home-produced eggs influenced DDT/DDE 
concentrations, while fatty fish and reception of breastfeeding impacted 
HCH/HCB concentrations. They concluded that, although in most cases, 
the associations of POPs and age are statistically significant, the age 
range (19–30) is too small for establishing POP effects. They indicate 
that it is important to consider the influence of diet and childhood 
nursing history for prediction of individual POPs in human milk. The 
same observation was found in Komprda et al. (2019) for seven indicator 
PCB in human milk measured between 1996 and 2011. The data set 
contained information from more than 1000 primiparous women from 
the Czech Republic and PCB concentrations in breastmilk, individual 
physiology and living characteristics. They found that exposure of 
children via breast feeding to PCB with a half-life of less than three years 
can be influenced by the food composition of mothers’ diets a few years 
before and during pregnancy. Body weight and age at delivery did not 

Fig. 2. Median OCP levels in human milk by mothers’ age and number of childbirths (N = 150) (Jovanović et al., 2021; Master thesis of Samardžić, 2021).  

Fig. 3. p,p’-DDT to p,p’-DDE ratios in milk samples by age groups and number 
of childbirths (1 - primiparae, 2 - secundiparae, and 3 - multiparae) (N = 150) 
(Jovanović et al., 2021; Master thesis of Samardžić, 2021). 
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have any significant impact on PCB levels in human milk. In their 
conclusion, food contamination and biomonitoring studies with detailed 
food questionnaires were singled out as important. For understanding 
PCB with longer half-lives, data about history of usage of products 
containing these compounds is important. 

3.1.2. Health risk assessment for breastfed infants 
We assessed health risks for breastfed infants based on PCB and OCP 

analysis in 150 samples described in previous section 3.1.1 PCB and OCP 
levels. To the best of our knowledge, this is the first risk assessment of its 
kind based on such a large number of samples in Croatia, and this is the 
first time we publish it. Our estimated daily intake (EDI) for POPs points 
to no or negligible risk for newborns. All of the compounds in all of the 

Fig. 4. Median PCB congener levels in milk of mothers by age groups and number of childbirths (N = 150) (Jovanović et al., 2021; Master thesis of Samardžić, 2021).  

Table 2 
Estimated daily intake of POPs in infants from mothers in our sample and comparison with TDI/ADI, MRL, RfD, and reference values recommended by the FAO/WHO 
(unpublished results).   

Estimated daily intake (EDI) - our study Minimum risk levels 
(MRL) 

Reference dose FAO/WHO (van Leeuwen 
et al., 2000) 

EDI (ng/kg day) Median Max Min Tolerable/Acceptable daily intake (TDI/ADI) 
(Wilhelm et al., 2002) 

ATSDR (2001) US U.S. EPA, 2001 
(RfD)  

ƩEDI_HCH group 19.48 230.8 2.25 300   5000a 

ƩEDI_DDT gropu 40.59 519.3 2.21 500   10,000 
ƩEDI_dioxin like 

group 
20.79 166.9 11.07     

ƩEDI_non-dioxin like 
group 

35.50 427.4 6.04     

ƩEDI_POPs 131.79 944.2 27.92     
α-HCH 1.06 117.2 0.20 1000 8000   
β-HCH 2.43 56.5 0.60  600   
γ-HCH 3.80 124.1 0.60 5000 10 300  
HCB 8.11 77.7 0.20 800/500 20 800 600 
p,p’-DDE 20.05 312.9 0.60     
p,p’-DDD 1.21 199.1 0.40     
p,p’-DDT 11.86 372.8 1.21  500 500  
PCB-28 1.01 43.4 1.01  30 20  
PCB-52 1.01 38.6 1.01  30 20  
PCB-101 1.01 74.7 1.01  30 20  
PCB-138 7.28 95.3 1.01  30 20  
PCB-153 12.66 175.5 1.01  30 20  
PCB-180 7.02 146.2 1.01  30 20  
PCB-105 1.01 22.9 1.01  30 20  
PCB-114 1.01 33.6 1.01  30 20  
PCB-118 1.01 10.9 1.01  30 20  
PCB-123 1.01 10.7 1.01  30 20  
PCB-156 1.01 17.0 1.01  30 20  
PCB-157 1.01 26.3 1.01  30 20  
PCB-167 1.01 34.9 1.01  30 20  
PCB-189 1.01 8.7 1.01  30 20  
PCB-60 1.01 10.6 1.01  30 20  
PCB-74 1.01 24.1 1.01  30 20  
PCB-170 4.86 103.1 1.01  30 20   

a For Lindane 
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150 samples were lower than the tolerable/acceptable daily intake 
(TDI/ADI) values (Table 2.). Only the ƩDDT group had one outlier 
sample (Fig. 5.) close to TDI. This is an interesting finding, as a notable 
number of Croatian mothers showed recent exposure to DDTs according 
to a p,p’-DDT/p,p’-DDE ratio higher than 1 in 30% of milk samples 
(Fig. 5.). 

Median and even maximum EDI for the HCH group and p,p’-DDT are 
significantly lower than the minimum risk level (MRL) and reference 
dose (RfD) (Table 2.). Risk levels for PCB are not defined in detail, but 
some recommendations 30 ng/kg day for MRL (ATSDR, 2001) and 20 ng 
kg-1 day for RfD (US U.S. EPA, 2001). In that respect, most of our 
samples are safe for consumption (Table 2.) with a few outliers where 
the EDI of PCB slightly exceeds 30 ng kg-1 day (Fig. 6.). These outliers 
mostly concern milk samples of women predominantly from age group 3 
(Fig. 5.). The ƩEDI of HCH group I, DDT group I, and HCB were also 
significantly lower than FAO/WHO recommendations (Table 2.), which 
confirms that the investigated milk samples were safe for infants. We 
therefore shifted our focus on identifying groups of compounds that had 
the highest contribution to EDI and singled out ƩEDI of DDT and 
non-dioxin-like groups as slightly higher contributors. Median and 
maximum EDI values were slightly higher in multiparae than primip-
arae, and most outliers concern EDI for women in age groups 3 and 4. 

3.2. Dioxin-like PCB: PCB-77, PCB-81, PCB-126, and PCB-169 

Due to the development a rapid and sensitive gas chromatographic 
method with electron ionization tandem mass spectrometry (GC-EI-MS- 
MS), we were able to determine the levels of PCB-77, PCB-81, PCB-126, 
and PCB-169 in 46 samples from primiparae and secundiparae from the 
Zadar area collected in 2014 (Table 3.) (Šimić et al., 2020). The overall 
prevalence of individual PCB had the following pattern: 
PCB-126>PCB-77>PCB-169≫PCB-81, but the highest levels were 
measured for PCB-169. 

The PCB levels measured in the Zadar region were significantly lower 
than those reported in lactating women from the Taizhou region in 
China, which topped the list of 32 countries/regions in the third WHO 
round (Man et al., 2017). However, our PCB-126 levels exceeded those 
reported for breast milk in Slovakia (Chovancova et al., 2011), Turkey 
(Çok et al., 2012), New Zealand (Mannetje et al., 2013), Sweden (Fång 
et al., 2013), some regions in France (Focant et al., 2013), and the rest of 
China (Sun et al., 2011), and were lower than those reported for 

Japanese (Todaka et al., 2008; Suzuki et al., 2005), Hungarian (Vigh 
et al., 2013), Danish, Finish, and French mothers (Antignac et al., 2016). 
Monitoring PCB-126 in human milk is of high interest, as it can increase 
the risk of type 2 diabetes (Zong et al., 2018). Similar findings were 

Fig. 5. EDIs of POPs by parity (primiparae, secundiparae and multiparae) (N = 150) (unpublished results).  

Fig. 6. Sum of EDI for all investigated POPs and by POP groups (N = 150) 
(unpublished results). 
In order to illustrate time trend, PCB are determined as total PCB with respect to 
the standard Aroclor 1260 mixture, since commercial PCB mixture served for 
comparison in the first PCB analyses. 

Table 3 
Dioxin-like PCB concentrations in human milk of primiparae and secundiparae 
collected from the Zadar area in 2014 (N = 46) and corresponding toxic 
equivalents (Šimić et al., 2020).  

Concentration [pg g− 1 milk fat] Min Max Mean Median 

PCB-77 5.44 288.80 29.10 18.59 
PCB-81 1.00 10.42 3.49 3.08 
PCB-126 2.54 705.99 45.53 25.41 
PCB-169 0.0014 1643.65 91.83 15.16 
Toxic equivalents (pg WHO-TEQ g¡1 milk fat) 
WHO2005TEQa 0.38 116.26 7.25 3.17 
WHO1998TEQa 0.30 85.84 5.45 2.72 

Limit of detection [pg g− 1 milk fat]: PCB-77 0.3, PCB-81 0.4, PCB-126 1, PCB- 
169 0.3. 

a Calculated on the basis of WHO1998 and WHO2005TEF (Van den Berg et al., 
2006). 
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observed for the levels of PCB-169. PCB-77 levels are lower than in the 
milk samples collected worldwide, except for Denmark, Finland, and 
France (Antignac et al., 2016). As noted in numerous studies before, this 
variability is owed to combined effects of mother’s age and parity, 
lifestyle, and living and occupational environment rather than food 
consumption (fish and seafood in particular) alone (Engeset et al., 2015; 
Xing et al., 2010). 

Judging by the calculated toxic equivalents (TEQ), which represent 
an estimate of total 2,3,7,8-TCDD-like activity of a mixture, PCB-126 
and PCB-169 individually contributed the most to mixture toxicity 
(Table 3.). Our TEQ results were in the range or even lower than those 
reported for Turkey, Hungary, Asia, Africa, America, and Europe (Fång 
et al., 2015; Ulaszewska et al., 2011). 

4. PCB and OCP time trend 

The first data on the level of DDE (1537 ng g− 1 milk fat), DDD (60 ng 
g− 1 milk fat), D DT (256 ng g− 1 milk fat), α-HCH (78 ng g− 1 milk fat), 
and β-HCH (150 ng g− 1 milk fat), in mother’s milk in Croatia 

refer to samples collected in 1976 (two smaller cities in continental 
Croatia, Bjelovar and Zabok) (Bažulić et al., 1978). In 1977, the first 
samples were collected in Zagreb (the capital city), and the results of 
DDE (31 ng g− 1 milk), DDD (10 ng g− 1 milk), DDT (11 ng g− 1 milk) were 
expressed per mass of milk (Krauthacker et al., 1978, Krauthacker et al., 
1980) making difficult comparison by newer data for Zagreb. Fig. 7 
shows the levels of OCP and PCB in human milk from 1976 to 2014 
(Bažulić et al., 1978; Krauthacker et al., 2009; Jovanović et al., 2021). 
Since commercial PCB mixture served for comparison in the first PCB 
analyses, PCB are determined as total PCB with respect to the standard 
Aroclor 1260 mixture, in order to illustrate time trend. 

Regression analysis and log normal transformation of the data 
showed a significant decreasing trend of total PCB (p < 0.02), β-HCH (p 
< 0.02) and p,p’-DDE (p < 0.01) while the trend observed for the levels 
of HCB appeared to be non-significant (p < 0.09). Fång et al. (2015) 
discussed temporal trends in Sweden and Japan, starting from the 1970s 
to 2010. They covered a period that was the same as ours. Our first 
measured value for DDE in 1976 was similar to that in Sweden, but in 
Japan DDE are higher (above 2000 ng g− 1 milk fat). Between 1980 and 
1990, DDE levels in Japan were characterized by fluctuations, as in 
Croatia, while in Sweden the downward trend was more pronounced, i. 

e. without fluctuations. Common for all three countries was a drop in 
levels in 1990 compared to 1980. Since 1990, all three countries were 
characterized by a slower decline in DDE levels. As for PCB, the situation 
was similar as with DDEs. The levels in Croatia measured in the 1980s 
were similar to those in Sweden and higher in Japan (above 1000 ng g− 1 

milk fat). All three countries had a drop in levels up to the 1990s. A 
comparison of the trend for β-HCH was possible for Japan and Croatia. 
In Japan, the levels were significantly higher for any given year (until 
1990, β-HCH was higher than 1000 ng g− 1 milk fat) than in Croatia. In 
both countries, levels are falling over five decades. All three countries 
had a pronounced drop for PCB, DDE (and β-HCH in Croatia and Swe-
den) until the 1990s, probably as a consequence of the first actions 
against primary sources of pollution. However, today there are many 
diffuse sources, such as atmospheric deposition, or sea food (fatty fish) 
which is difficult to control. 

5. PCDD/F and PBDE 

5.1. PCDD/F 

PCDD/F investigation were done in collaboration with WHO studies 
1st round (1987–1988) (Environmental Health Series No 34, 1989), 2nd 

round (1992–1993) (Environmental Health in Europe No. 3, 1996), 3rd 

round (2000–2003) (Malisch and van Leeuwen, 2003) and 6th round 
(2012–2015), and data obtained in the WHO 6th round have not been 
published before. Table 4 shows their concentrations in three groups of 
milk samples collected from primiparae in Zagreb, the island of Krk (in 
2000) (Malisch and van Leeuwen, 2003) and in Zadar (in 2014) (un-
published results). All three groups of milk samples contained all of the 
analyzed congeners in the range from <0.029 pg g− 1 for 2,3,4,6,7, 
8-HxCDF to 42 pg g− 1 for OCDD. Levels of PCDD and PCDF from the 
island of Krk and Zagreb collected in the same year did not differ 
significantly, and the congener profiles were similar to those in most 
human milk from Europe sampled around the same time (Polder et al., 
1998; Focant et al., 2002; Vartiainen et al., 1997), which suggests that 
women in European countries are exposed to these compounds simi-
larly. PCDD/F levels from 2014 are comparable to levels reported in the 
Spanish BETTERMILK study (Hernández et al., 2020) for samples 
collected in 2015. In this study, levels internationally reported over the 
period from 2012 to 2020 are discussed (see Table 4 and references 

Fig. 7. Temporal trends (red line) of the concentrations of organochlorine compounds (ng g− 1 fat) sampled in Croatia from 1976 (Bažulić et al., 1978; Krauthacker 
et al., 2009) to 2014 (Jovanović et al., 2021), and the results of log-linear regression (blue dotted line and the corresponding equation).). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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therein), and Croatian levels are comparable to studies reporting lower 
concentrations. In our samples, 1,2,3,6,7,8-HxCDD, 1,2,3,4,6,7, 
8-HpCDD, and OCDD are the most abundant in all three groups, OCDD 
in particular. OCDD, 1,2,3,4,6,7,8-HpCDD and 1,2,3,6,7,8-HxCDD are 
among the dominant congeners reported by other researchers (Focant 
et al., 2013; Hernández et al., 2020) including in areas contaminated by 
dioxins as in Vietnam. In Vietnam, for PCDD, the most abundant con-
geners were 1,2,3,6,7,8-HxCDD, 1,2,3,4,6,7,8-HpCDD and OCDD; 
OCDDs in particular contributed over 40–50% to the total PCDD/F mass 
concentration. The pattern of PCDF indicates 2,3,4,7,8-PeCDF, 1,2,3,4, 
7,8-HxCDF, 1,2,3,6,7,8-HxCDF and 1,2,3,4,6,7,8-HpCDF as highly 
abundant congeners (Hue et al., 2014). 

Given the difference of 14 years in sampling in our study, a 
decreasing trend in the concentrations of each congener was observed, 
except for 2,3,4,7,8-PeCDF. Also, 2,3,4,7,8-PeCDF was slightly higher in 
2014 (Zadar) than in 2000 (Zagreb), and was more toxic than other CDF 
congeners (Knutsen et al., 2018). PCDD/F and dioxin-like compounds 
had half-lives typically between 7.2 years and 15 years, but Matsumoto 
et al. (2015) found that half-life of blood 2,3,4,7,8-PeCDF tended to-
wards infinity. 

Considering the temporal trend expressed by toxic equivalents, when 
results were compared over a ten (and more) year period, a decreasing 
trend was observed (Table 4.). Gyllenhammar et al. (2021) researched 

the temporal trend from 1996 to 2017 in human milk from Swedish 
mothers, and they found out that PCDD have declined faster than PCDF, 
resulting in an increased proportion of PCDF compared to PCDD towards 
the end of the study. Among the PCDD/F, 1,2,3,6,7,8-HxCDD (5.7 pg g− 1 

lipid) and 2,3,4,7,8-PeCDF (4.9 pg g− 1 lipid) showed the highest mean 
concentrations. The results of PCDD/F measurements in Croatia were 
insufficient to show a time trend because a time series requires a mini-
mum of five reported data points, but the Croatian levels were in the 
range of measurements in Sweden. Gyllenhammar et al. (2021) 
concluded that the slower decline of PCDD/F (including CB-169, CB-180 
and HCB) during the last decade is worrying, and that it is important to 
continue monitoring in breast milk from Swedish mothers in order to 
further observe if the concentrations of POPs are stabilizing at their 
current levels or would continue decrease. This is in agreement with 
findings of WHO surveys which indicated that PCDD, PCDF, and PCB 
levels in human milk are still significantly above those considered 
toxicologically safe (Van den Berg et al., 2016). 

5.2. PBDE 

Table 5 shows PBDE levels (ng g− 1 milk fat) measured in a number of 
countries as part of the 6th WHO/UNEP round, whereas the rest have 
been taken from Zhang et al. (2017) covering the period from 2000 to 
2015. Croatian data from 2014 as part of the 6th WHO/UNEP round have 
not been published before. North America stands out with the highest 
levels, probably owing to their more intense use of PBDEs. Croatian 
levels are comparable to the European ones and belong to the lower tier. 
BDE 153 and BDE 47 are dominant, which is in accordance with Zhang 
et al. (2017). 

PBDE occurrence in the environment, accumulation in tissue, and 
related health risks have been studied from the outset (Wu et al., 2020), 
and the number of studies on BDE-209 in human samples has increased 
considerably in recent years thanks to more sensitive analytical tech-
niques. Darnerud et al. (2015) reported that the ratio of low- and 
medium-brominated BDE congener levels in serum and milk is around 1 
but that it increases with six bromines and upwards. They found 
decreasing levels of some bromine flame retardants in serum and breast 
milk over time and concluded that risk management fairly rapidly 
resulted in reduced human exposure. 

6. WHO studies, benefits of breastfeeding, and the role of health 
centers in Croatia 

Since 1987, WHO has coordinated six international studies of POP 
levels and trends in human milk in collaboration with other interna-
tional organizations and national institutions on possible health risks, 
emphasizing health risk of infants. Croatia (carried out by Institute for 
Medical Research and Occupational Health, Zagreb) participated in four 
of these rounds: 1st, 2nd, 3rd, and 6th. In the 6th round, an important role 
was given to the University of Zadar, Department of Health Studies and 
its cooperative institution Zadar County Health Center, Community and 
Primary Health Care Division (visiting nurses) who collected the milk 
and promoted breastfeeding among mothers. Visiting nurses are in a 
unique position to inform mothers about environmental pollution and 
related health risks. 

WHO recommends exclusive breastfeeding for the first 6 months of 
life to be continued in combination with appropriate complementary 
foods for up to 2 years or beyond because a risk-benefit analysis pointed 
to many benefits of breastfeeding for the infant and mother (Global 
strategy for infant and young child feeding Geneva: WHO, 2022; van den 
Berg et al., 2016). Exclusive breastfeeding is considered an effective way 
to provide balanced nutrition with all of the necessary nutrients which 
allow better growth and development of the infant and protection 
against chronic and infectious diseases (Global strategy for infant and 
young child feeding Geneva: WHO, 2022; WHO, 2001). 

Table 4 
Levels and toxic equivalents of PCDDs and PCDFs in human milk collected in 
Zagreb, the island of Krk and in Zadar.  

PCDD/F (w/pg g− 1 

milk fat) 
Krk, 2000; 10 
pooled samples; 
3rd WHO study ( 
Malisch and van 
Leeuwen, 2003) 

Zagreb, 2000; 12 
pooled samples; 
3rd WHO study ( 
Malisch and van 
Leeuwen, 2003) 

Zadar, 2014; 50 
pooled samples; 
6th WHO study 
(unpublished 
results) 

2,3,7,8-TCDD 0.85 0.89 0.34 
1,2,3,7,8-PeCDD 1.67 1.90 0.72 
1,2,3,4,7,8-HxCDD 0.93 1.07 0.36 
1,2,3,6,7,8-HxCDD 3.61 4.06 1.72 
1,2,3,7,8,9-HxCDD 1.38 1.41 0.47 
1,2,3,4,6,7,8- 

HpCDD 
8.79 9.73 2.4 

OCDD 41.87 41.62 17.9 
2,3,7,8-TCDF 1.39 1.49 0.3 
1,2,3,7,8-PeCDF 0.37 0.49 0.13 
2,3,4,7,8-PeCDF 4.47 2.01 2.68 
1,2,3,4,7,8-HxCDF 1.62 2.01 0.84 
1,2,3,6,7,8-HxCDF 1.40 1.71 0.84 
1,2,3,7,8,9-HxCDF 0.68 0.80 0.45 
2,3,4,6,7,8-HxCDF 0.10 0.25 <0.029 
1,2,3,4,6,7,8- 

HpCDF 
1.59 1.81 0.73 

1,2,3,4,7,8,9- 
HpCDF 

0.07 0.42 0.043 

OCDF 0.33 0.42 0.097 
PCDD/F toxic equivalents (pg WHO-TEQ g¡1 milk fat) from 1988, 1993, 2000 

and 2014 
1988; 1st WHO 

study; ( 
Environmental 
Health Series No 
34, 1989) 

12 (14 pooled 
samples) 

11.8 (42 pooled 
samples) 

– 

1993; 2nd WHO 
study; ( 
Environmental 
Health in Europe 
No. 3, 1996) 

8.4 (10 pooled 
samples) 

13.5 (12 pooled 
samples) 

– 

2000; 3rd WHO 
study; (Malisch 
and van Leeuwen, 
2003) 

6 (12 pooled 
samples) 

6.8 (12 pooled 
samples) 

– 

2014; 6th WHO 
study; 
(unpublished 
results) 

– – 2.4 (50 pooled 
samples)  
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7. Conclusion and suggestion for further actions 

Although nearly 40 years has passed since the ban of OCB and OCP 
usage, and 20 years after the Stockholm convention that listed 12 sub-
stances (PCB, OCP and PCDD/F-“12 dirty dozen”) for international 
control, legacy PCB, OCP and PCDD/F are still present in human milk. 
The time trend between 1976 and 2014 for DDE, HCB, β-HCH and PCB in 
Croatian human milk has a decreasing trend, always reported in lower 
concentrations, but despite this, they are still present in breast milk. 

Review of data about PCB, OCP and PCDD/F in human milk pointed 
to a few interesting facts for future research: the first of them is DDT, 
median values of p,p’-DDT/p,p’-DDE ratio for all age classes are lower 
than 1 and in approximately 30% of the samples this ratio is higher than 
1 indicating more recent p,p’-DDT pollution of these mothers; the second 
is the importance of PCB-170 in future measurements including conge-
ners substituted with chlorine atoms at ortho positions; whereas the 
third is that 2,3,4,7,8-PeCDF was more toxic than other CDF congeners, 
stressed as persistent over decades and therefore deserving more 
attention. PCB, OCP and PCDD/F provide an example of multi-decade 
environmental pollution and threat to human health, and for this 
reason they will be monitored and researched in all parts of the envi-
ronment for many years to come. 

Based on our comprehensive report, our suggestion is further 
monitoring of POPs in Croatian breast milk with emphasis on impor-
tance of diet on POP levels. Detailed food questionnaires is 
recommended. 
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Table 5 
PBDE levels (ng g− 1 milk fat) in human milk samples worldwide.   

Belgium (Aerts 
et al., 2019) 

China (Zhang 
et al., 2017) 

The Netherlands ( 
Zeilmaker et al) 

Croatia (unpublished 
results) 

Sweden (Darnerud 
et al., 2015) 

Europe (Zhang 
et al., 2017) 

North America (Zhang 
et al., 2017) 

BDE28 NI 0.118 NI 0.016 0.01–0.47 0.08 2.1 
BDE47 0.24 0.137 0.492 0.218 0.10–2.1 1.04 30.8 
BDE99 0.1 0.0468 0.132 0.0685 0–0.48 0.34 6.5 
BDE100 NI 0.0513 NI 0.0756 0.03–1.4 0.25 6.3 
BDE153 0.46 0.527 0.741 0.242 0.21–3.4 0.66 6.2 
BDE154 0.13 0.0139 NI 0.0125 0.01–0.11 0.07 0.57 
BDE183 NI 0.0929 NI 0.0268 0–0.04 0.13 0.18 

Data of 6th WHO/UNEP round for Croatia (unpublished results), Belgium (Aerts et al., 2019), The Netherlands (Zeilmaker et al). 
Netherlands: 

∑
BDEs − 17, − 28, − 66, − 100, − 154: 0.227 ng g− 1 milk fat (Zeilmaker et al). 

Croatia: BDE17: 0.0022; BDE66: 0.0063; BDE138:<6 (unpublished results). 
Sweden: BDE66: 0–0.05; BDE138:0 0.01 (Darnerud et al., 2015). 
NI-no information. 
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Data availability 

Data will be made available on request. 
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Hig. Rada 29, 125–128. 

Ballschmiter, K., Wittlinger, R., 1991. Interhemispheric exchange of 
hexachlorocyclohexanes, hexachlorobenzene, polychlorobiphenyls, and 1,1,1-tri-
chloro-2,2-bis(p-chlorophenyl)ethane in the lower troposphere. Environ. Sci. 
Technol. 25, 1103–1111. https://doi.org/10.1021/es00018a014. 
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